
Homework 4 Binary Search Trees Due: See Canvas

Important

There are general homework guidelines you must always follow. If you fail to follow any of the following
guidelines you risk receiving a 0 for the entire assignment.

1. All submitted code must compile under JDK 8. This includes unused code, so don’t submit extra
files that don’t compile. Any compile errors will result in a 0.

2. Do not include any package declarations in your classes.

3. Do not change any existing class headers, constructors, instance/global variables, or method sig-
natures.

4. Do not add additional public methods.

5. Do not use anything that would trivialize the assignment. (e.g. don’t import/use java.util.ArrayList
for an Array List assignment. Ask if you are unsure.)

6. Always be very conscious of efficiency. Even if your method is to be O(n), traversing the structure
multiple times is considered inefficient unless that is absolutely required (and that case is extremely
rare).

7. You must submit your source code, the .java files, not the compiled .class files.

8. After you submit your files, redownload them and run them to make sure they are what you
intended to submit. You are responsible if you submit the wrong files.

Binary Search Trees

You are to code a binary search tree. A binary tree is a collection of nodes, each having a data item and
a reference pointing to the left and right child nodes. What makes a binary tree a binary search tree is
that it must follow the order property: for any given node, its left child and all of its children must be less
than the current node while its right child and all of its children must be greater than the current node.
In order to compare the data, all elements added to the tree must implement Java’s generic Comparable

interface.

It will have two constructors: the no-argument constructor (which should initialize an empty tree), and
a constructor that takes in data to be added to the tree, and initializes the tree with this data. Any
attempts to add data that is already in the tree should be ignored (the tree shouldn’t be changed, and
the duplicate item shouldn’t get added).

You may import Java’s LinkedList/ArrayList classes for the 4 traversal methods, but only for these
methods.

Recursion

Since trees are naturally recursive structures, all methods that are not O(1) must be implemented
recursively, except for level order traversal. You’ll also notice that a lot of the public method stubs
we’ve provided do not contain the parameters necessary for recursion to work, so these public methods
act as “wrapper methods” for the user to use. These wrapper methods will just call another private
helper method that is recursive. To reiterate, do not change the method headers for the provided
methods.

For methods that change the structure of the tree in some way, we highly recommend you use a technique
taught in class called pointer reinforcement. It’s not required, but it will make the homework cleaner,
and it’ll also help greatly when we get to a later homework.

1



Homework 4 Binary Search Trees Due: See Canvas

Nodes

The binary search tree consists of nodes. The BSTNode class will be given to you; do not modify it.

Methods

You will implement all standard methods for a Java data structure (add, remove, etc.) in addition to
a few other methods. Some of these methods are functions that you’d expect from a BST (such as the
traversals) while some of the other ones serve more as practice BST recursion problems for you.

Traversals

You will implement 4 different ways of traversing a tree: pre-order traversal, in-order traversal, post-
order traversal, and level-order traversal. The first 3 MUST be implemented recursively; level-order is
best implemented iteratively. For a level-order traversal, you may use Java’s Queue interface (and an
implementing class for it such as LinkedList).

Height

You will implement a method to calculate the height of the tree. The height of any given node is
max(left node’s height, right node’s height) + 1. A leaf node has a height of 0. Based on this
recursive definition, this means that null nodes would have a height of -1.

Comparable

As stated, the data in the BST must implement the Comparable interface. As you’ll see in the java files,
the generic typing has been specified to require that it implements the Comparable interface. You use
the interface by making a method call like data1.compareTo(data2). This will return an int, and the
value tells you how data1 and data2 are in relation to each other.

• If positive, then data1 > data2.

• If negative, then data1 < data2.

• If zero, then data1 equals data2.

Do note that the returned value can be any integer in Java’s int range, not just -1, 0, 1 as you may have
seen in some examples.

2



Homework 4 Binary Search Trees Due: See Canvas

Grading

Here is the grading breakdown for the assignment. There are various deductions not listed that are
incurred when breaking the rules listed in this PDF, and in other various circumstances.

Methods:
add 15pts
remove 19pts
get 6pts
contains 6pts
traversals 8pts
isBST 10pts
height 3pts
clear 3pts
constructor 5pts
Other:
Checkstyle 10pts
Efficiency 15pts
Total: 100pts

A note on JUnits

We have provided a very basic set of tests for your code, in BSTStudentTests.java. These tests do
not guarantee the correctness of your code (by any measure), nor do they guarantee you any grade. You
may additionally post your own set of tests for others to use on the Georgia Tech GitHub as a gist. Do
NOT post your tests on the public GitHub. There will be a link to the Georgia Tech GitHub as well as
a list of JUnits other students have posted on the class Piazza.

If you need help on running JUnits, there is a guide, available on Canvas under Files, to help you
run JUnits on the command line or in IntelliJ.

Style and Formatting

It is important that your code is not only functional but is also written clearly and with good style. We
will be checking your code against a style checker that we are providing. It is located on Canvas, under
Files, along with instructions on how to use it. We will take off a point for every style error that occurs.
If you feel like what you wrote is in accordance with good style but still sets off the style checker please
email Tim Aveni (tja@gatech.edu) with the subject header of “[CS 1332] CheckStyle XML”.

Javadocs

Javadoc any helper methods you create in a style similar to the existing Javadocs. If a method is
overridden or implemented from a superclass or an interface, you may use @Override instead of writing
Javadocs. Any Javadocs you write must be useful and describe the contract, parameters, and return
value of the method; random or useless javadocs added only to appease Checkstyle will lose points.

Vulgar/Obscene Language

Any submission that contains profanity, vulgar, or obscene language will receive an automatic zero on
the assignment. This policy applies not only to comments/javadocs but also things like variable names.

3

mailto:tja@gatech.edu


Homework 4 Binary Search Trees Due: See Canvas

Exceptions

When throwing exceptions, you must include a message by passing in a String as a parameter. The mes-
sage must be useful and tell the user what went wrong. “Error”, “BAD THING HAPPENED”,
and “fail” are not good messages. The name of the exception itself is not a good message.

For example:

Bad: throw new IndexOutOfBoundsException(‘‘Index is out of bounds.’’);

Good: throw new IllegalArgumentException(‘‘Cannot insert null data into data structure.’’);

Generics

If available, use the generic type of the class; do not use the raw type of the class. For example, use new

LinkedList<Integer>() instead of new LinkedList(). Using the raw type of the class will result in a
penalty.

Forbidden Statements

You may not use these in your code at any time in CS 1332.

• package

• System.arraycopy()

• clone()

• assert()

• Arrays class

• Array class

• Thread class

• Collections class

• Collection.toArray()

• Reflection APIs

• Inner or nested classes

• Lambda Expressions

• Method References (using the :: operator to obtain a reference to a method)

If you’re not sure on whether you can use something, and it’s not mentioned here or anywhere else in
the homework files, just ask.

Debug print statements are fine, but nothing should be printed when we run your code. We expect
clean runs - printing to the console when we’re grading will result in a penalty. If you submit these, we
will take off points.

4



Homework 4 Binary Search Trees Due: See Canvas

Provided

The following file(s) have been provided to you. There are several, but we’ve noted the ones to edit.

1. BST.java

This is the class in which you will implement the BST. Feel free to add private helper methods but
do not add any new public methods, inner/nested classes, instance variables, or static
variables.

2. BSTNode.java

This class represents a single node in the BST. It encapsulates the data, left, and right reference.
Do not alter this file.

3. BSTStudentTests.java

This is the test class that contains a set of tests covering the basic operations on the BST class.
It is not intended to be exhaustive and does not guarantee any type of grade. Write your own
tests to ensure you cover all edge cases.

Deliverables

You must submit all of the following file(s). Please make sure the filename matches the filename(s)
below, and that only the following file(s) are present. If you make resubmit, make sure only one copy of
the file is present in the submission.

After submitting, double check to make sure it has been submitted on Canvas and then download your
uploaded files to a new folder, copy over the support files, recompile, and run. It is your responsibility
to re-test your submission and discover editing oddities, upload issues, etc.

1. BST.java

5


	Important
	Binary Search Trees
	Recursion
	Nodes
	Methods
	Traversals
	Height
	Comparable

	Grading
	A note on JUnits
	Style and Formatting
	Javadocs
	Vulgar/Obscene Language
	Exceptions
	Generics

	Forbidden Statements
	Provided
	Deliverables

